Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Chim Acta ; 547: 117415, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: covidwho-20230697

RESUMEN

BACKGROUND: Great concerns have been raised on SARS-CoV-2 impact on men's andrological well-being, and many studies have attempted to determine whether SARS-CoV-2 is present in the semen and till now the data are unclear and somehow ambiguous. However, these studies used quantitative real-time (qRT) PCR, which is not sufficiently sensitive to detect nucleic acids in clinical samples with a low viral load. METHODS: The clinical performance of various nucleic acid detection methods (qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH) was assessed for SARS-CoV-2 using 236 clinical samples from laboratory-confirmed COVID-19 cases. Then, the presence of SARS-CoV-2 in the semen of 12 recovering patients was investigated using qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH in parallel using 24 paired semen, blood, throat swab, and urine samples. RESULTS: The sensitivity and specificity along with AUC of CBPH was markedly higher than the other 3methods. Although qRT-PCR, OSN-qRT-PCR and cdPCR detected no SARS-CoV-2 RNA in throat swab, blood, urine, and semen samples of the 12 patients, CBPH detected the presence of SARS-CoV-2 genome fragments in semen samples, but not in paired urine samples, of 3 of 12 patients. The existing SARS-CoV-2 genome fragments were metabolized over time. CONCLUSIONS: Both OSN-qRT-PCR and cdPCR had better performance than qRT-PCR, and CBPH had the highest diagnostic performance in detecting SARS-CoV-2, which contributed the most improvement to the determination of the critical value in gray area samples with low vrial load, which then provides a rational screening strategy for studying the clearance of coronavirus in the semen over time in patients recovering from COVID-19. Although the presence of SARS-CoV-2 fragments in the semen was demonstrated by CBPH, COVID-19 is unlikely to be sexually transmitted from male partners for at least 3 months after hospital discharge.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Masculino , SARS-CoV-2/genética , COVID-19/diagnóstico , Semen/química , Prueba de COVID-19 , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Viral/genética
2.
Lancet Microbe ; 3(11): e824-e834, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2031776

RESUMEN

BACKGROUND: The H3N8 avian influenza virus (AIV) has been circulating in wild birds, with occasional interspecies transmission to mammals. The first human infection of H3N8 subtype occurred in Henan Province, China, in April, 2022. We aimed to investigate clinical, epidemiological, and virological data related to a second case identified soon afterwards in Hunan Province, China. METHODS: We analysed clinical, epidemiological, and virological data for a 5-year-old boy diagnosed with H3N8 AIV infection in May, 2022, during influenza-like illness surveillance in Changsha City, Hunan Province, China. H3N8 virus strains from chicken flocks from January, 2021, to April, 2022, were retrospectively investigated in China. The genomes of the viruses were sequenced for phylogenetic analysis of all the eight gene segments. We evaluated the receptor-binding properties of the H3N8 viruses by using a solid-phase binding assay. We used sequence alignment and homology-modelling methods to study the effect of specific mutations on the human receptor-binding properties. We also conducted serological surveillance to detect the H3N8 infections among poultry workers in the two provinces with H3N8 cases. FINDINGS: The clinical symptoms of the patient were mild, including fever, sore throat, chills, and a runny nose. The patient's fever subsided on the same day of hospitalisation, and these symptoms disappeared 7 days later, presenting mild influenza symptoms, with no pneumonia. An H3N8 virus was isolated from the patient's throat swab specimen. The novel H3N8 virus causing human infection was first detected in a chicken farm in Guangdong Province in December, 2021, and subsequently emerged in several provinces. Sequence analyses revealed the novel H3N8 AIVs originated from multiple reassortment events. The haemagglutinin gene could have originated from H3Ny AIVs of duck origin. The neuraminidase gene belongs to North American lineage, and might have originated in Alaska (USA) and been transferred by migratory birds along the east Asian flyway. The six internal genes had originated from G57 genotype H9N2 AIVs that were endemic in chicken flocks. Reassortment events might have occurred in domestic ducks or chickens in the Pearl River Delta area in southern China. The novel H3N8 viruses possess the ability to bind to both avian-type and human-type sialic acid receptors, which pose a threat to human health. No poultry worker in our study was positive for antibodies against the H3N8 virus. INTERPRETATION: The novel H3N8 virus that caused human infection had originated from chickens, a typical spillover. The virus is a triple reassortment strain with the Eurasian avian H3 gene, North American avian N8 gene, and dynamic internal genes of the H9N2 viruses. The virus already possesses binding ability to human-type receptors, though the risk of the H3N8 virus infection in humans was low, and the cases are rare and sporadic at present. Considering the pandemic potential, comprehensive surveillance of the H3N8 virus in poultry flocks and the environment is imperative, and poultry-to-human transmission should be closely monitored. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, Hunan Provincial Innovative Construction Special Fund: Emergency response to COVID-19 outbreak, Scientific Research Fund of Hunan Provincial Health Department, and the Hunan Provincial Health Commission Foundation.


Asunto(s)
COVID-19 , Subtipo H3N8 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Preescolar , Gripe Aviar/epidemiología , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Filogenia , Estudios Retrospectivos , Pollos , Aves de Corral , Patos , Mamíferos
3.
Front Med (Lausanne) ; 8: 735779, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1470760

RESUMEN

Objectives: To data, no patients with obvious epidemiological relationship co-infected with SARS-CoV-2 and other pathogens have been reported. Here, we investigated 10 patients caused by co-infection with SARS-CoV-2 and human adenovirus (HAdV), resulting in third-generation transmission. Materials and Methods: From Jan 15, 2020, we enrolled 10 patients with pneumonia in Hunan Province, China. Epidemiological, clinical, and laboratory investigation results from these patients were analyzed. An epidemiological investigation was performed to assess whether patient infections were linked using conventional methods and metagenomic sequencing. Results: The presence of co-infection with SARS-CoV-2 and HAdV was determined via RT-PCR and metagenomic sequencing. Phylogenetic analysis revealed that SARS-CoV-2 and HAdV genomes clustered together, with similar genetic relationships. The first patient likely became co-infected during meetings or travel in Wuhan. The patient transmitted the virus via dinners and meetings, which resulted in four second-generation cases. Then, a second-generation case transmitted the virus to her family members or relatives via presymptomatic transmission. Conclusions: This study described an example of co-infection with SARS-CoV-2 and HAdV in pneumonia patients, which caused third-generation cases and inter-regional transmission via meetings, household interactions, and dinner parties. We also observed the persistent and presymptomatic transmission of co-infection, which has the potential to make the continued control of the COVID-19 pandemic challenging. Continuous surveillance is needed to monitor the prevalence, infectivity, transmissibility, and pathogenicity of SARS-CoV-2 co-infection with other pathogens to evaluate its real risk.

4.
Reprod Biomed Online ; 42(3): 589-594, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-955942

RESUMEN

RESEARCH QUESTION: What are the risks associated with cryopreserved semen collected during and after the coronavirus disease 2019 (COVID-19) pandemic wave in Wuhan, China? DESIGN: Retrospective cohort study involving young adult men who were qualified sperm donors at the Hunan Province Human Sperm Bank (China) during the pandemic wave (1 January 2020 to 30 January 2020) and after the wave and return to work (7 April 2020 to 30 May 30 2020). One hundred paired semen and blood specimens from 100 donors were included. One-step single-tube nested quantitative real-time polymerase chain reaction (OSN-qRT-PCR) was used to detect SARS-CoV-2. Moreover, to control the unacceptable risk of false-negative results, a second round of screening was performed with pooled RNA from negative semen samples using crystal digital PCR (cd-PCR). RESULTS: For individual blood and semen samples, the target genes, namely the nucleocapsid protein (N) and open reading frame (ORF-1ab) genes, tested negative in all of the 100 paired samples. Further, as per cd-PCR results, there were >20,000 droplets per well in the RNA for each combined sample and no positive droplets were present for either of the aforementioned target genes. A total of 100 paired semen and blood samples from these two groups tested negative for SARS-CoV-2. CONCLUSIONS: Cryopreserved semen at the Hunan Province Human Sperm Bank during and after the COVID-19 pandemic wave was free of SARS-CoV-2 and was judged safe for external use in the future.


Asunto(s)
COVID-19 , Pandemias , China/epidemiología , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , SARS-CoV-2 , Semen , Bancos de Esperma , Espermatozoides , Adulto Joven
5.
Science ; 371(6526)2021 01 15.
Artículo en Inglés | MEDLINE | ID: covidwho-944842

RESUMEN

A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus.


Asunto(s)
Infecciones Asintomáticas , COVID-19/prevención & control , COVID-19/transmisión , Cadena de Infección/prevención & control , SARS-CoV-2 , Adolescente , Adulto , Anciano , Niño , Preescolar , China/epidemiología , Trazado de Contacto , Composición Familiar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Cuarentena , Interacción Social , Esparcimiento de Virus , Adulto Joven
6.
J Med Virol ; 92(9): 1518-1524, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2600

RESUMEN

The outbreak of the novel coronavirus disease (COVID-19) quickly spread all over China and to more than 20 other countries. Although the virus (severe acute respiratory syndrome coronavirus [SARS-Cov-2]) nucleic acid real-time polymerase chain reaction (PCR) test has become the standard method for diagnosis of SARS-CoV-2 infection, these real-time PCR test kits have many limitations. In addition, high false-negative rates were reported. There is an urgent need for an accurate and rapid test method to quickly identify a large number of infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of patients. We have developed a rapid and simple point-of-care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS-CoV-2 virus in human blood within 15 minutes which can detect patients at different infection stages. With this test kit, we carried out clinical studies to validate its clinical efficacy uses. The clinical detection sensitivity and specificity of this test were measured using blood samples collected from 397 PCR confirmed COVID-19 patients and 128 negative patients at eight different clinical sites. The overall testing sensitivity was 88.66% and specificity was 90.63%. In addition, we evaluated clinical diagnosis results obtained from different types of venous and fingerstick blood samples. The results indicated great detection consistency among samples from fingerstick blood, serum and plasma of venous blood. The IgM-IgG combined assay has better utility and sensitivity compared with a single IgM or IgG test. It can be used for the rapid screening of SARS-CoV-2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Inmunoensayo , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , COVID-19/virología , Humanos , Inmunoensayo/métodos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Pruebas en el Punto de Atención , Juego de Reactivos para Diagnóstico , Tiras Reactivas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA